Description
It is well-known that for any n there are exactly four n-digit numbers (including ones with leading zeros) that are self-squares: the last ndigits of the square of such number are equal to the number itself. These four numbers are always suffixes of these four infinite sequences:
...0000000000
...0000000001 ...8212890625 ...1787109376For example, 093762 =87909376, which ends with 09376.
You are required to count the numbers that are almost self-squares: such that each of the last n digits of their square is at most d away from the corresponding digit of the number itself. Note that we consider digits 0 and 9 to be adjacent, so for example digits that are at most 3 away from digit 8 are 5, 6, 7, 8, 9, 0 and 1.
Input
The first line contains the number of test cases t,1≤t≤72. Each of the next t lines contains one test case: two numbers n(1≤n≤ 18) and d(0≤ d≤3).
Output
For each test case, output the number of almost self-squares with length n and the (circular) distance in each digit from the square at most d in a line by itself.
Sample Input
25 02 1
Sample Output
412
Hint
In the second case, number 12's almost self-squares are: 00, 01, 10, 11, 15, 25, 35, 66, 76, 86, 90, 91
题意:
求满足以下条件
①.这个数为n位(可以有前导零)
②.取它的平方的后n位,与它本身每一位对应之差≤d(这里的差指的是数字之间的距离,而这个距离是将数字按圈排列,0与9相邻所求得的)
的数字的个数。
题解:
打表吧
规律就是 res[i][j] = res[i-1][j]*(2*j+1)
代码:
#include#include #include #include #include #include #include #include #include #include